Computing Cohomology of Local Systems
نویسندگان
چکیده
Let V be a holomorphic vector bundle on a complex manifold M , with a flat connection ∇. We shall make the following three assumptions: (1) M is an open subset of a bigger complex manifold M . (2) The boundary D = M \M is a divisor with normal crossing singularities. (3) The connection ∇ is unipotent along D. Under these assumptions, V has a canonical extension to a vector bundle V on M . Since ∇ has at worst logarithmic poles along D, it extends to a map ∇ : V → V ⊗ Ω M (logD).
منابع مشابه
TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES
Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...
متن کاملANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]
Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, i...
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...
متن کاملSerre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals
This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010